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We study the dependence of the intrinsic spin Hall effect on the crystal symmetry and geometry of experi-
ment. The spin current is obtained and the Hall voltage caused by the polarization of the electron spins is
computed. The unique dependence of the effect on the crystal symmetry permits the choice of geometry, in
which the spin Hall effect can be unambiguously distinguished from the effects due to the orbital motion of
charge carriers and due to the magnetic field generated by the transport current.
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The spin Hall effect consists of opposite “Hall” currents
for charge carriers with opposite spin polarizations. Remark-
ably, no magnetic field is needed for the electrons with spin
up and spin down to veer in opposite directions. The effect
was initially observed in GaAs strips by Kato et al. via Kerr
signal,1 and by Wunderlich et al. via polarization of light
emitted at the recombination of spin-polarized electron-hole
pairs.2 When numbers of spin-up and spin-down electrons
are equal, no net electric current across the strip is generated
by the spin Hall effect. If, however, the electrons are polar-
ized due to, e.g., injection from a ferromagnet,3 then the
numbers of electrons veering left and right are different and
a Hall voltage is produced. Valenzuela and Tinkham used
this effect to measure the spin Hall conductivity in the alu-
minum strip.4

Dyakonov and Perel5 were apparently the first to suggest
that scattering of charge carriers by unpolarized impurities in
semiconductors can lead to the spin polarization of the
sample boundaries. Their suggestion was based upon a simi-
lar effect in atomic physics known as Mott scattering.6 When
a relativistic electron passes at a speed v through an atom,
the partially unscreened electric field of the nucleus, E, cre-
ates the magnetic field B=E�v /c in the coordinate frame of
the electron. This field partially polarizes the electron spin in
the direction that is opposite for the electrons passing the
nucleus on the right and on the left. Consequently, one can
achieve a spatial separation of spin-up and spin-down elec-
trons when unpolarized electron beam passes through unpo-
larized atomic target.

A number of microscopic models have been developed
that extended these ideas to solids. Various “extrinsic” �due
to impurities� and “intrinsic” �impurity free� mechanisms
have been studied with the aim to explain quantitatively the
spin Hall effect in nonmagnetic conductors,7 as well as to
explain the anomalous Hall effect in magnetic materials.8

Most of the existing theoretical models are based upon the
Boltzmann-type kinetic equation that describes spin and
charge transport under certain assumptions about the colli-
sion integral. There is also a vast amount of numerical work
of disordered systems in lattices of finite size. So far these
works have not offered any universal description of the spin
Hall effect. Instead a variety of different spin Hall effects
�spin precession, side jump, skew scattering� that are specific
to the model of spin-orbit interaction, nature of scatterers,
band structure, boundary effects, etc. has been proposed. A

simple single-electron picture of the intrinsic spin Hall ef-
fect, similar to the treatment of the conventional Hall effect
within Drude model, has been suggested in Ref. 9. In this
picture the Mott scattering of the transport current by the
crystal field appears naturally within the framework of the
Aharonov-Casher effect.10 The parameter-free expression for
the spin Hall conductivity was obtained for cubic crystals in
good agreement with experiments. In this Brief Report, we
will extend the treatment of Ref. 9 to noncubic crystals.
Straightforward experiments will be suggested that can test
our predictions.

Our approach is based upon the general form of the one-
electron Hamiltonian that contains spin-orbit interaction to
1 /c2 �Ref. 11�:

H =
p2

2m
+ U�r� +

�

4m2c2� · ��U � p� . �1�

It is exactly this Hamiltonian, with U�r� being the electric
potential of the atom, which is responsible for the Mott scat-
tering of electrons in the atomic physics. In a solid, U�r� is
the electrostatic crystal potential felt by a charge carrier. For
certainty we will speak about electrons but the model will
equally apply to holes. With an accuracy to 1 /c2 Hamiltonian
Eq. �1� is mathematically equivalent to10

H =
1

2m
�p −

e

c
A��2

+ U�r� �2�

where e�0 is the charge of electron and9

A� � −
�

4emc
�� � �U� . �3�

�We have used the mathematical fact that the action of the
operator p on A� is zero, �ijk� j�i�kU=0.� Consequently, the
orbital motion of electrons is affected by the fictitious spin-
dependent magnetic field:

B� = � � A� = −
�

4emc
�� � �� � �U�� . �4�

This fictitious field produces the same effect on the orbital
motion of electrons as the real magnetic field does in the
conventional Hall effect, but with the Hall currents having
opposite directions for electrons with opposite spin polariza-
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tions. The spin-dependent Lorentz force, FL�=−�e /c��v
�B��, gives rise to the fictitious spin-dependent Hall electric
field,

EH� = RH�B� � j0� , �5�

where j0=env0 is the transport current expressed through the
concentration n and drift velocity v0 of the electrons, and
RH=−1 / �nec� is the Hall constant. If the electrons are polar-
ized, the spin average of Eq. �4� gives rise to the effective
magnetic field,

Bef f = −
�

4emc
�� � �� � �U�	 , �6�

and to the measurable Hall electric field:

EH = RH�Bef f � j0� . �7�

In these formulas, 0���1 is the polarization of the elec-
trons and � . . . 	 denotes the space average. If polarized elec-
trons are injected from, e.g., a magnetic metal, j0 describes
the flow of the injected electrons.

In the presence of the real magnetic field B, Eq. �2�
should be replaced by

H =
1

2m
�p −

e

c
A −

e

c
A��2

+ U�r� +
g

2
�B� · B , �8�

where A= �B�r� /2, g is the gyromagnetic factor, and �B is
the Bohr magneton. Since the definition of A�, Eq. �3�, al-
ready contains 1 /c, the cross-term proportional to A ·A� in
Eq. �8� has the order 1 /c3. Within the nonrelativistic approxi-
mation of Eq. �1�, that has accuracy to 1 /c2, such a cross-
term must be omitted. Consequently, in the nonrelativistic
theory the conventional Hall effect and the spin Hall effect
are totally independent. For that reason and in order to em-
phasize the consequences of the spin Hall effect, we are con-
sidering below the case of B=0.

When writing down Eqs. �5� and �7�, we made an assump-
tion that �v�B�	= �v	� �B�	. Some justification of this as-
sumption follows from the fact that the trajectory of the
charge carrier does not correlate strongly with the quadru-
pole component of the crystal electric field contained in the
expression for B�. Another argument is based upon symme-
try. Indeed, the only reason for �FL�	 to be different from
zero would be v0��v	�0. Consequently, �FL�	 should be
first order on v0. Being perpendicular to the velocity, the
force FL� does not do mechanical work on the charge. Nei-
ther should �FL�	 with respect to the drift motion of the

charges, rendering the form �FL�	=−�e /c��v0� B̃�. It is natu-

ral to identify B̃ with Bef f of Eq. �6�.
To show that space averaging in Eq. �6� produces a non-

zero result, one needs to compute ��i� jU�r�	. Experiments
performed to date have been done in cubic semiconductors
and in aluminum that is also cubic.1,2,4 For a cubic lattice

��i� jU	 = C	ij �9�

due to the cubic symmetry alone, with C being a constant.
This constant can be found from the Laplace equation:

C �
1

3
��2U�r�	 = −

4


3
e���r�	 , �10�

where ��r� is the charge density that creates U�r�. To make
the right choice for ��r�, we notice that the spin-orbit inter-
action becomes larger as the electron passes closer to the
nucleus. Similar to the Mott scattering by individual atoms,
the electric neutrality of the crystal as a whole12 is irrelevant
for our problem; the distances that matter are the ones where
the screening of the electric charge of the nuclei is not
complete.13 Consequently, the spatial average in Eq. �6� must
be over short distances. Due to the periodicity of the crystal
it can be computed over the unit cell. In that sense our sym-
metry argument for the cubic lattice and other lattices studied
below is similar to the argument used to compute the crystal
field �magnetocrystalline anisotropy� in magnetically ordered
crystals.14

In line with the conventional approach to solids,15 we
choose U�r� as the potential formed by a cubic lattice of ions
of charge −Ze�0. Then ��	=−Zen0=−en where n0 and n
=Zn0 are concentrations of ions and conduction electrons,
respectively. This gives C=4
e2n /3.9 Those who find this
argument too simplistic may want to compare it with the
approach developed by Hirsch.16 In a model that replaces
moving spins with stationary electric dipoles Hirsch com-
puted the same average over a cubic lattice of charges nu-
merically. To nine decimal places, his result coincides with
ours up to a factor of 2 that can be traced to the difference in
the expression for the fictitious magnetic field.17 Note that in
a microscopic model the right-hand side of Eq. �10� contains
a sum over delta functions. It is therefore likely that at the
microscopic level the spin Hall effect originates from the
singularity of the Coulomb potential. Since our model does
not treat the screening effects rigorously and does not take
into account the interaction between the electrons, our result
for C can only be valid up to a factor of order unity.

Substitution of Eq. �9� into Eq. �6� gives

Bef f = C
�B

e2 � =
4


3
n�B� , �11�

which provides the Hall field

EH = −
2
�

3mc2 �� � j0� . �12�

Note that this formula does not contain any dependence on
the concentration of charge carriers. Only the knowledge of
� and j0 are needed to compute the Hall electric field. This
allows easy analysis of experiments with polarized electrons
in cubic conductors. One can see a potential problem, how-
ever, with interpreting the Hall voltage in Eq. �12� as a spin
Hall effect. Indeed, the effective field in Eq. �11� equals the
magnetic field that the polarized electrons would produce in
a spherically shaped body; with 4
 /3 being the demagnetiz-
ing factor. The magnetic field due to polarization of electron
spins in the actual sample should be different by a factor of
order unity. Nevertheless, given the experimental uncertain-
ties, it may be difficult to practically distinguish the spin Hall
effect described by Eq. �12� from the conventional Hall ef-
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fect due to the magnetic field produced by the electron po-
larization.

In fact, the above-mentioned controversy is a conse-
quence of the cubic symmetry. Indeed, in the conventional
Hall effect only the orbital motion of the electron matters,
the electron spin is irrelevant. On the contrary, the spin Hall
effect arises from the spin-orbit term in the Hamiltonian.
Consequently, there must be a clear way to distinguish be-
tween the two effects. As we shall see below, the noncubic
crystals present such a possibility. Consider, e.g., a tetragonal
crystal with n being the unit vector in the direction of the c
axis. By symmetry, Eq. �9� should be now replaced with �a
=b�

��i� jU	 = C�ka	ij + �kc − ka�ninj� , �13�

where ka�kc are factors of order unity. Working out the
cross products in Eq. �6� one obtains

Bef f = C
�B

2e2 ��ka + kc�� + �ka − kc��n · ��n� . �14�

The new feature is the component of the effective field along
the tetragonal axis. �Notice the analogy with the magnetic
anisotropy field in a magnetically ordered uniaxial crystal.14�

Substitution of Eq. �14� into Eq. �7� gives

EH = −

�

3mc2 ��ka + kc��� � j0� + �ka − kc��n · ���n � j0�� .

�15�

This formula must be also correct for a hexagonal crystal,
with n along the hexagonal axis. Its remarkable property is
that due to the second term the Hall voltage can be produced
in the sample even when the electrons are polarized along the
direction of the transport current. This would be a clear
manifestation of the Hall effect due to the spin, in contrast to
the ordinary Hall effect due to the conventional spin-
independent Lorentz force on the transport current. One pos-
sible geometry of the experiment is shown in Fig. 1.

Until now we have studied the spin Hall effect in a system
of partially polarized electrons. Alternatively, one can study
the spin currents that would polarize the boundaries of the
sample in the absence of the polarization in the bulk. In fact,
this is how the spin Hall effect was initially observed.1,2 The
spin current is defined7 as the one-particle expectation value
of

jik =
1

2
en��ivk + vk�i� , �16�

In general it is not conserved. However, due to the relativis-
tic smallness of spin-orbit interaction the reversal of the elec-
tron spin occurs only in a small fraction of scattering events.
Consequently, in a small sample at low temperature the
charge carriers typically reach the boundary of the sample
before scattering reverses their spins. In this case Eq. �16�
provides a useful concept for the study of the spin accumu-
lation at the boundaries.

Since Eq. �16� contains Pauli matrices, the nonzero expec-
tation value of jik is provided by the spin-dependent part of
the velocity operator. The latter is given by9

v� =
e

m
EH�, �17�

where  is the scattering time. Consider, e.g., an orthorhom-
bic crystal. By symmetry the principal axes of the second-
rank tensor ��i� jU	 should be directed along the a ,b ,c axes
of the crystal. Choosing the axes of the coordinate frame
along the crystal axes, we present ��i� jU	 in a diagonal
form:

��i� jU	 = Cki	ij , �18�

with kx,y,z being generally unequal factors of order unity.
Substitution of Eq. �18� into Eq. �4� then gives

B�i = C
�B

2e2�i�kx + ky + kz − ki� . �19�

Finally, with the help of Eqs. �5�, �16�, �17�, and �19�, one
obtains

jik =

��0

3mc2 �ikl�kx + ky + kz − ki�j0l, �20�

where �0=e2n /m is the usual charge conductivity. Accord-
ing to this equation, the strength of the spin current as com-
pared to the charge current is determined by the factor
��0 / �mc2� which also determines the ratio of spin Hall and
charge conductivities.9 For good metals at low temperature
this ratio can be of order 10−4.

For a cubic crystal kx=ky =kz=1 and Eq. �20� reduces to
the expression

jik =
2
��0

3mc2 �iklj0l, �21�

which is independent of the orientation of the crystal lattice
with respect to the transport current. This may present a
problem for distinguishing the polarization of the sample
boundaries generated by the spin Hall effect from the spin
polarization generated by the Zeeman effect due to the mag-
netic field of the current. This controversy can be resolved by
studying the spin Hall effect in a noncubic crystal. Consider,
e.g., two geometrically identical conducting strips, one cut
along the aa plane and the other cut along the ac plane of a
tetragonal crystal, with the z axis being perpendicular to the
plane of the strip and the transport current being along the y
axis. It is easy to see from Eq. �20� that the spin current jzx
= �
��0 / �3mc2���kx+ky�j0, describing the flow of �z along

HV
0j

ξ

n

FIG. 1. �Color online� Geometry of the proposed experiment.
The crystal anisotropy axis is at an angle with the film. Due to the
spin Hall effect the Hall voltage appears even when the electron
spins are polarized along the transport current.
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the x axis, is different for the two strips. The ratio of these
spin currents for the same value of the transport current is
given by jzx�aa� / jzx�ac�=2ka / �ka+kc��1. Consequently, the
spin polarizations of the boundaries generated by the spin
Hall effect will also be different for the two strips, while
polarizations generated by the Zeeman effect due to the mag-
netic field of the transport current will be the same.

In Conclusion, we have studied the intrinsic spin Hall
effect in noncubic crystals. The unique dependence of the
effect on the crystal symmetry permits geometry of experi-

ment in which the spin Hall effect can be unambiguously
distinguished from the effects caused by the orbital motion
of charge carriers and by the magnetic field of the transport
current.
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